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1 Abstract

Multi-stage time-stepping schemes that are tailored to chosen spatial-differencing operators

are derived and tested. The schemes are constructed to give optimal damping of the high-

frequency waves, making them ideal for use with multi-grid acceleration. The concept of

characteristic time-stepping, necessary for the extension of the scalar analysis to systems

of equations, is presented. The schemes show a marked improvement over Runge-Kutta

schemes.

2 Introduction

Numerical methods for the computation of steady flows can be divided into two classes:

explicit and implicit methods. Implicit methods have been favored for steady-state calcula-

tions for a long time; this relates to the elliptic nature of the equations of steady subsonic

flow. Representative of the class of implicit methods used for solving the steady Euler and

Navier-Stokes equations are the Approximate-Factorization methods developed at NASA

Ames Research Center [1] (luring the seventies. The strongest argument in favor of implicit

methods is the relatively large reduction in residual that can be achieved in one iteration

step. This is due in part to the numerical coupling of computational cells from one boundary

to another in a single iteration.

Explicit techniques require many more iterations than implicit techniques, but each itera-

tion is relatively cheap. The numerical coupling from boundary to boundary can be achieved

at low computational cost by the use of coarse-grid iTlformation, in a so-called multi-grid

strategy. Once multi-grid relaxation has been successfully implemented, explicit methods

have only advantages over implicit methods. They require little storage, are easily imple-

mented on vector and parallel architectures, and naturally allow local grid refinements [2].

The latter advantage is crucial, since adaptive grid refinement seems to be the most promis-

ing way to efficiently obtain spatial accuracy in complex problems. The most popular explicit



methods for computing steady solutions of the Euler and Navier-Stokes equations are the

multi-stage methods pioneered by Jameson et al [3].

This lecture concerns the design of explicit multi-stage schemes for the Euler equations,

for use in a multi-grid strategy. The requirements for single-grid and multi-grid schemes

differ somewhat, although probably not as much as has been traditionally assumed. For

single-grid computations the standard approach is always to take the maximum time-step

allowed by the scheme's stability condition, the underlying idea being that the asymptotic

steady state will then be reached in fewer steps. This is not necessarily the best strategy for
multi-grid computations.

In a multi-grid procedure, one special task of the marching scheme is to remove high-

frequency components of the error while marching; the multi-grid strategy acts to remove

low-frequency components through the use of coarse-grid representations of the solution [4].

In all marching schemes presently in use, the best damping properties are achieved for a

time-step that is substantially less than the maximum allowed by stability considerations.

To make a marching scheme a good multi-grid "smoother," the temporal and spatial

discretization must be matched to each other. Since the spatial discretization dictates the

final accuracy of the solution, the most natural way is to select a spatial discretization and

design the time discretization in such a way that short waves are effectively damped. In

the multi-grid code developed by Jameson [5], this is achieved by appropriately choosing the

values of the parameters of a multi-stage integration method. The analysis on which the

choice of parameters is based is strictly scalar and one-dimensional, and is carried out by

trial and error. The material presented in this lecture suggests that a more thorough and

comprehensive analysis of the damping properties of multi-stage schemes, and its proper ex-

tension to systems of multi-dimensional equations, can significantly improve the performance

of the multi-grid procedure.

The core of this presentation is the analysis and optimization of the damping properties

of multi-stage schemes for the one-dimensional linear convection equation (Section 2); the

results can be applied to a nonlinear convection equation (Section 3), owing to the weU-known

scalar preconditioning technique of using "local" time steps. The extension to the system of

the one-dimensonal Euler equations requires the use of "characteristic" time-steps, equivalent

to preconditioning by a matrix (Section 4). The successful application to multi-dimensional

scalar equations depends on the availability of a technique to damp numerical signals that

move normal to the physical transport directions; application to the multidimensional Euler

equations in addition requires a new matrix preconditioning. These two techniques are still

in development (Section 5).

The analysis is illustrated with numerical experiments throughout Sections 3, 4 and 5

In Section 6 the results are summarized and a prognosis is given for explicit multi-grid

relaxation for the multi-dimensional Euler equations.
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3 The Multi-Stage Scheme as a High-Frequency Fil-

ter

The generic marching scheme used is a two-stage or predictor-corrector integration method

for the linear ordinary differential equation

du )_u, _ E C , (1)
dt

that is,

= u" + aAt)_u" (2a)

u"+1 = u" + At_fi (2b)

= [1 + AAt + a(AAt) 2] u n. (2c)

Here a is the time-step ratio and is a free parameter. A,_ seen from Equation 2c, the stability

and damping properties of the scheme are associated with the complex polynomial

p2(z,a)= l + z +az 2, z__._At. (3a)

This polynomial has two complex-conjugate roots, zl (,_) and z2(a) = z; (a), with

1 i v_- 1; (Sb)
zl(a)--2_ 2_

these may be moved along the circle

[_ (z0)+ 112 + [9 (z0)]:: = 1 (3c)

by varying a.

When a partial differential equation is interpreted by the method of lines, A represents the

Fourier transform of the spatial differencing operator, and depends on the spatial frequency

or, more specifically, on the spatial wave number

fl = 27r_Ax. (4)

For instance, when solving the convection equation

Ou Ou
-Ot c , c "> O,

use of upwind differencing for the spatial derivative gives

At_ = -_ [_(z,t) - U(X Az, t)],

where the non-dimensional time step,

cAt
lJ--

Ax '

(_)

(0)

(7)
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is the Courant-Friedrichs-Lewy (CFL) number. After inserting harmonic data

u (z) = uoe2," x, (8)

Equation fi reduces to Equation 1 with

_At _ z (/_,v)- -v(1- e-'#) . (9)

The key observation to be made here is that, for any flo in the high-frequency range

[¢/2, _r], it is possible to make z(_o,U) = ,_(_o)At coincide with a zero o/ P2(z,a), by choosing

a particular combination of a and At. This results in perfect damping of the wave with wave

number/_0 in one application of the predictor-corrector scheme. Using strings of predictor-

corrector schemes, tuned to damp different frequencies, the entire high-frequency range can

be damped to arbitrarily low levels.

Strings of predictor-corrector methods generate multi-stage methods with an even number

of stages; to get an odd number of stages, a single application of the "forward-Euler" scheme

u n+l - u" + At_Xu" (10a)

= (1 + )_At)u '_, (lOb)

..... should be included in the string. The forward-Euler step has amplification factor

Pl(z)= l + z; (11)

this polynomial has one zero, at

zl = -1. (12)

A second key observation is that, for any fixed number of stages, there is an optimum

scheme, in the Loo sense, reducing all of the high frequencies to an amplitude not exceeding a

unique minimal threshold level. It is these "optimally smoothing" multi-stage schemes that

are developed here, for use in multi-grid Euler codes.

3.1 Optimal Multi-Stage Schemes for General Spatial Differenc-

ing

For a general spatial-differencing operator, whether convective or diffusive, or a combination

of both, the Fourier transform can still be written as

,_At -- z(fl, v) = u[a(_) + ib(_)], (13)

where u is a nondimensional time-step; keeping to the framework of convective equations for

the sake of example, v shall continue to be referred to as the CFL number. For a frequency

/_0 to be perfectly damped by the two-stage scheme, associated with the polynomial 3a, it

is necessary to set z,(.) = z(_0, u), or

1 i v/_ _ 1 = via(f/0) + ib(f/0))], (14)
24 2c_



with solution

a2o+ b2o (15a)
C_o - 4a_ '

21ao1 (15b)
Vo- a02+bg,

where ao = a(flo), bo = b(fl0). The single-step forward-Euler scheme can only damp the fre-

quency for which the Fourier transform (Equation 13) is real-valued; for any finite-difference

operator this means

/_0 _ 7t" ; (16)

the corresponding CFL number is

1 (17)
laol"

For the first-order upwind differencing operator, the optimization of the high-frequency

damping in a string of predictor-corrector and single-step operators can be done analyti-

cally [6]; for more complex differencing operators this i:_ no longer feasible. An iterative

method for solving this minimax problem is described below.

Suppose that, in optimizing an m-stage method (m ,wen or odd), as an initial guess or

from the previous iteration, a set of perfectly damped frequencies ilk, k = 1,... ,fit, with

fit = int(m/2), has been obtained; let these be represented by the vector rio- There are

fit + 1 local maxima of on the interval [r/2, rr], called Mk, k = 1,...,fit + 1; these

can be found by a numerical search. As long as these values are not equal, the scheme is not

optimal. The lack of equality is expressed in the form of an L2-residual

rh

Ro -- R(_o)= _--_(Mk+x(/5o)- Mk05o)) 2, (18)
k=l

which is then brought closer to zero by one step of a Newton process. Since fit frequencies

must be updated, fit independent residual values must be obtained. For this purpose, all

frequencies flk are perturbed by a small amount 8fl, i.e.,

fl_ = flk + 613, (19)

and fit new frequency vectors fl(i) are formed such that the first i frequencies are perturbed,

i.e.:

I') = i= a,...,fit. (20)

For all of these frequency vectors, residuals are obtained in the manner described above;

these are called R (0,

R (i) = R(fl (i)), i= 1,...,fit, (21)

and are collectively indicated by the residual vector R:

R - (R¢x),..., (22)

The Jacobian matrix J _ dR(_)/dfl of the residual vector with respect to the frequency

vector, needed for a Newton step, is computed approxima,tely by means of finite-differencing.



Defining the vectors/3(i5) as/3(0 with the jth component either perturbed or 'unperturbed',
i.e.

/3t,,s) ,= _''" _}+1, , t .....

0 (i'j) -" (_,''',_,_i+l,''',_j-l,_j,_j+l,''',_ffa),

and defining the corresdponding residuals R (i'j),

R(','_--R

j < i, (23a)

j > i, (23b)

(24)

some of which have been calculated previously; the elements of the Jacobian are then eval-

uated according to

OR (k)
Jkt - (25a)

0&

R(k) _ R(k,t)

= 5fl ' g < k; (25b)

R(k,t) _ R(k)
Jkt = , g > k. (25c)

The Newton step amounts to solving for the correction vector A/3 from

- JA/3 = R, (26)

and updating/30 :

/30 :=/3o + A/3. (27)

The above procedure was implemented to find the first six multi-stage schemes with

optimal high-frequency damping for the spatial differencing operator with Fourier transform

1-X.l_
1

+ t¢ (expi_ -1)} , (28))_At=-u(1-exp-i_){1 + ----_ ( exp-it_) + --_

corresponding to higher-order upwind-biased differencing [7]. The parameter x regulates the

upwind bias: x = 1 yields central differencing, t¢ = -1 second-order-accurate fully upwind

differencing, x = 1/3 third-order-accurate upwind-biased differencing. For this latter choice,

the damping properties of the six schemes are displayed in Figures 1 to 11.

The important parameters of the first six multi-stage schemes for several spatial-differencing

operators are listed in Tables 1-5; these require some explanation. Specifically, the quanti-

ties ak listed in Tables 1-3 are not the time-step ratios of the constituent predictor-corrector

schemes, but the time-step ratios arising in the practical implementation of an m-stage

scheme, i.e.,

u (°) = u", (29a)

u (k) = u (°) + c_kAt)_u (k-l), k = 1,...,m, (29b)

u "+a = u('). (29c)
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Figure 1: Amplification factor; third-order, one-stage scheme
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Figure 2: Amplification factor; third-order, two-stage scheme
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Figure 3: Locus and contours; third-order, two-stage scheme
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Figure 4: Amplification factor; third-order, three-stage scheme
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Figure 5: Locus and contours; third-order, three-stage scheme
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Figure 6: Amplification factor; third-order, four-stage scheme
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Figure 7: Locus and contours; third-order, four-stage scheme
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Figure 8: Amplification factor; third-order, five-stage scheme
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Figure 9: Locus and contours; third-order, five-stage scheme
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Figure 10: Amplification factor; third-order, six-stage scheme
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Figure 11: Locus and contours; third-order, six-stage scheme

Note that the m th step always spans the full time-interval At, so that

c_m = 1. (30)

The amplification factor of the above scheme can be written as

P,n(z) = 1 + z(1 + _,,,_lz(1 + am-2Z( ...... (1 + c_2z(1 + t_lZ))...))), (31a)

where z now corresponds to the CFL number for the full time-interval. The coefficients

ak thus are found by multiplying out the string of polynomials of the form 3a and 11, and

re-scaling z such that the linear term gets a coefficient of unity.

For example, the three-stage first-order method, regarded as a string of a single step and

a predictor-corrector operator, can be shown to have the amplification factor

Z 2 2

P3(z) = (1 -4- 5)(1 -4-z -4- _z ),

with z corresponding to a CFL number of 1; it can be rewritten as

=1+ z +_ z +'i_ z

(32)

(33)

(34)

OF

2 2 8 3 (35a)P3( ) =

= 1-1- 5 (1 q- _- (35b)
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Numberof Stages

3 4 5 6

0.1481 0.0833 0.0533 0.0370

0.4000 0.2069 0.1263 0.0851

1 0.4265 0.2375 0.1521

1 2

cxx 1 0.3333

or2 1

Or3

Ot 4

O_5

_6

0.4414 0.2562

0.4512

1

Table 1: Multi-stage Coefficients for Optimal First-Order Scheme

2

cq 0.4242

ct2 1

Ot 3

OL4

_5

Ot 6

Number of Stages

3

0.1918

0.4929

4

0.1084

0.2602

0.5052

5

0.0695

0.1602

0.2898

0.0482

0.1085

0.1885

1 0.5060 0.3050

1 0.5063

1

Table 2: Multi-stage Coefficients for Optimal Second-Order (to = -1) Scheme

13



C_2

_3

_4

C_5

C_6

Number of Stages

2 3 4 5 6

0.6612 0.2884 0.1666 0.1067 0.0742

1 0.5010 0.3027 0.1979 0.1393

1 0.5275 0.3232 0.2198

i 0.5201 0.3302

1 0.5181

1

Table 3: Multi-stage Coefficients for Optimal Third-Order (_ = 1/3) Scheme

with 2 = (3/2)z. The scheme is completely defined by specifying

4

al -- 27' (36a)

2

c_2 = _, (36b)

a3 = 1, (36c)

3

v = _. (360)

As mentioned before, the CFL number achieved in an m-stage scheme optimized for a partic-

ular spatial-differencing operator is considerably lower than the maximum CFL number that

can be realized using any m-stage scheme. For the first-order upwind-differencing operator,

for instance, the maximum CFL number attainable in m steps equals m; in the scheme with

optimized high-frequency damping the CFL number amounts to m/2. The minimax values

of [P[ in the high-frequency range are shown in Table 4; the CFL numbers to achieve these

are shown in Table 5.

4 Application to a Nonlinear Scalar Equation

A nonlinear convection equation with a source term,

Ou 0 (__) lsin(rx ) xE[O, 1] (37)

The spa-was chosen for a scalar test of the optimally smoothing multi-stage schemes.

tim operator was approximated by third-order upwind-biased differencing, corresponding to
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Number of Stages

1 2 3 4 5 6

First
0.7071 0.3333 0.1415 0.0589 0.0244 0.0101

Order

_¢= _2 0.8093 0.6521 0.4309 0.3030 0.20733

t¢ = ! 0.7016 0.4668 0.2950 0.1848 0.1153
3

t¢ = 0 0.6636 0.4213 0.2579 0.1558 0.0940

_; = _! 0.6432 0.4009 0.2413 0.1435 0.0851
3

_; = --_ 0.6289 0.3887 0.2316 0.1364 0.07943

x = -1 0.6179 0.381)1 0.2244 0.1315 0.0759

Scheme

Table 4: IPI,_= for # e [_r/2,_r] for Optimal Schemes

Number of Stages

1 2 3 4 5 6

First 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000
Order

=-2 0.9132 2.0333 2.3252 3.0438 3.5865
3

t¢ = 1 0.8276 1.3254 1.7320 2.1668 2.59753

x-- 0 0.7031 1.0560 1.3994 1.7487 2.0976

_; = _x 0.6055 0.8950 1.1885 1.4844 1.7802
3

= --_ 0.5295 0.7808 1.0371 1.2953 1.5536
3

=-1 0.4693 0.6936 0.9214 1.1508 1.3805

S cheme

Table 5: Optimal CFL number for Optimal Schemes
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Number of Stages

2 3 4 5 6

oq ! 1 1 ! 1
2 3 4 5 6

_2 1 1 1 1 _1
2 3 4 S

1 1 1
a3 1 2 3 i

a4 1 ! !
2 3

1

a6 1

Table 6: Multi-stage Coefficients for Runge-Kutta Schemes

Equation 28 with x = 1/3. Steady solutions were sought on a grid of 512 cells. Two different

kinds of marching-schemes were tried:

1. Runge-Kutta multi-stage schemes, with use of the maximum stable CFL number;

2. Optimally smoothing multi-stage schemes.

When using the optimally smoothing multi-stage methods, it is crucial to make the CFL

number constant over the entire grid, namely, equal to the unique value derived for maximum

damping. This amounts to "local time-stepping" at the prescribed CFL number. For the

Runge-Kutta schemes, local time-stepping was used at the highest stable CFL numbers. In

cells where the convection speed passes through zero, the time-step must be limited (see,

e.g. [8]). For both kinds of schemes, a saw-tooth cycle of multi-grid acceleration was used.

All solutions were converged to a factor of l0 -l° reduction in the residual.

The coefficients for the first six Runge-Kutta schemes are shown in Table 6; the results of

these schemes with regard to convergence speed are summarized in Table 7. The computa-

tional work needed for convergence, expressed in terms of finest-grid residual calculations, is

shown for various numbers of stages and grid levels. It is clear that the maximum-time-step

strategy does not combine with the multi-grid strategy; the reason is that the Runge-Kutta

schemes, like most schemes, are not good smoothers at the maximum stable CFL number.

The results of the optimally smoothing schemes are shown in Table 8. These schemes

clearly are a better match for multi-grid acceleration than the Runge-Kutta schemes. Con-

vergence is reached more quickly in all cases investigated, even on a single grid, despite lower

CFL numbers. It is interesting to note that the most efficient of the optimally smoothing

schemes, for a sufficient number of grid levels, is the simple two-stage scheme, at least for

this simple scalar problem. The gain in smoothing and CFL number achieved with a larger

number of stages does not overcome the added computational work.

16



Number of Stages

2 3 4 5 6

1 1352 933 816 835 942

2 921 581 528 645 585

Grid 3 739 373 350 805 641

Levels 4 1452 315 570 919 642

5 1585 326 721 969 744

6 2154 378 749 1034 839

Table 7: Work required for convergence in scalar case -- Runge-Kutta schemes with maxi-

mum stable CFL number. Work is expressed as number of finest-grid residual calculations.

Number of Stages

2 3 4 5 6

1 716 627 660 655 660

2 384 365 354 360 369

Grid 3 235 221 224 237 252

Levels 4 169 180 165 188 203

5 144 198 163 175 186

6 146 201 166 178 178

Table 8: Work required for convergence in scalar ca_e--Optimally smoothing schemes.
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5 Application to a System of Equations

The next series of numerical experiments was based on the quasi-one-dimensional Euler

equations for flow in a converging-diverging channel. Only the optimally smoothing multi-

stage schemes were tested. The equations were solved in the form

0

cOt puA + _ (pu 2 + p) A = p.._

pEA pu(E + p/p)a 0

(38)

where A is the channel area, given by

1

A(x) = 1 + _ (1 - cos (Trz)), -1 < z < 1.

Two test cases were run, both with an inflow Mach number Moo = 0.3059:

(39)

1. Shockless transonic flow;

2. Transonic flow with a shock in the diverging portion of the channel.

The Mach number distribution for the second case is shown in Figure 12. In all cases,

a sawtooth cycle was used for the multi-grid acceleration, with third-order upwind-biased

spatial differencing (to = 1/3) on the finest grid, and first-order upwind differencing on all

coarser grids. In all cases, the parameters associated with the sawtooth cycle (number of

solver applications on finest and on coarser grids) were varied in order to obtain convergence

in the least amount of work. Each case was run with local time-stepping and characteristic

time-stepping (explained below) for comparison.

The choice of upwind-differencing is not coincidental; in fact it is mandatory for the

analysis to extend to the system case. If a conventional approximation is used, based on

central-differencing and an artificial viscosity with a scalar coefficient, the loci in the complex

plane have a different shape for each wave mode. If upwind-differencing is used, the loci differ

merely by a scale factor. Characteristic time-stepping, i.e. use of different time steps for the

different characteristic equations such as to make all characteristic CFL numbers equal, can

then be used to remove these scale factors.

Characteristic time-stepping is equivalent to preconditioning the Euler residual by a

local matrix, rather than a scalar, as in local time-stepping. To show this, the quasi-one-

dimensional Euler equations are written as

cOU _zU (40)0-'T = -A (U) + s (U,z) = Res (U) ;

for the present analysis the conservation form is not required. The nominal matrix-preconditioned

version of this equation reads

0U

0---/-= max [p (A)] IAI-' Res, (41)

18
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Figure 12: Mach number distribution -- Transonic flow with shock

where p (A) is the spectral radius of A, and IAI is the matrix with the same eigenvectors

as A but with the absolute eigenvalues of the latter. In practice each of these eigenvalues

may locally vanish, or be very small, making the inversion of IAI impossible or undesirable.

Therefore, Equation 40 will actually be preconditioned according to

0u
0-"_ = m=ax [p (A)] (IAr)-' Res, (42)

where the eigenvalues of IAI" are bounded away from zero. The lower bound of the eigen-

values of IAI* will depend on the magnitude of the local source term. The replacement of

the matrix IAI by a non-singular matrix IAI*arises also in the numerical implementation of

the so-called entropy condition for first-order hyperbolic system [8].

With only local time-stepping, the preconditioned Euler equations read

0u
- max [p (A)] [p (A)] -1Res. (43)

cgt

The work required for convergence of the shockless cases, on a fine grid of 256 cells,

is indicated in Tables 9 (local time-stepping) and 10 (characteristic time-stepping). For

local time-stepping, one solver on the finest grid and one solver on the coarser grids was

most efficient for all cases. For characteristic time-stepping, with six grid levels, it was

advantageous to use two or three solver applications on the finest grid. Even then, the

performance of the multbgrid relaxation leveled off for more than four grid levels. The

reason for this is not yet understood. It is seen that characteristic time-stepping leads to

a substantial improvement in convergence speed over local time-stepping. This is to be

expected from the analysis, and can be traced to two causes:

1. Characteristic time-stepping removes stiffness due to the variation among characteristic

speeds, thus improving the performance of the scheme on a single grid;

19



Grid

Levels

Number of Stages

2 3 4 5 6

1 6455 5396 5161 4952 4826

2 1135 1277 1441 1580 1719

3 822 844 890 938 985

4 795 783 804 832 875

5 871 802 800 797 882

6 632 589 625 648 718

Table 9: Work required for convergence -- Shockless transonic flow -- Local time-stepping

2. By characteristic time-stepping, the optimal CFL number may be used for all waves

simultaneously.

The work required for convergence of the cases with a shock is shown in Tables 11 (local

time-stepping) and 12 (characteristic time-stepping). For local time-stepping, the strategy

of one solver application on each grid was the most efficient, except for a few cases with

two or three grid levels. These cases required up to three solver applications on the finest

and/or coarser grids. For characteristic time-stepping, the number of solver applications

varied from one to eight on the finest grid, and from one to three on the coarser grids. Even

with these variations, four of the cases did not achieve a residual drop of 10 -1°, but got hung

up between l0 -s and 10 -9. Nevertheless, in all converged cases, characteristic time-stepping

helped speed up convergence.

Figures 13-15 shed some light on the convergence properties of the schemes tested for

the shock case. The comparison between local and characteristic time-stepping can be seen

in Figure 13, which shows the two residual histories for the two-stage scheme with five grid

levels. The effect of the number of stages on convergence can be seen in Figure 14, which

shows the residual histories for characteristic time-stepping and five grid levels. The effect

of the number of grid levels can be seen in Figure 15, which shows the residual histories for

the two-stage scheme with characteristic time-stepping.

That the multi-grid convergence is basically independent of the number of cells in the

finest grid may be seen in Figures 16-19, which show the residual histories for a variety of

cases. For each base grid, the numbers of stages and grid levels that gave the best perfor-

mance were chosen. The convergence histories with characteristic time-stepping (Figures 17

and 19) show the proper behavior, while for local time-stepping, shown in Figures 16 and 18,

there is some dependence on the number of cells in the base grid.
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Grid

Levels

Number of Stages

2 3 4 5 6

1 2432 1968 1881 1808 1760

2 376 449 517 573 632

3 170 202 235 270 303

4 140 144 157 172 182

5 150 146 159 180 183

6 243 222 218 238 264

Table 10: Work required for convergence -- Shockless transonic flow -- Characteristic time-

stepping

Grid

Levels

Number of Stages

2 3 4 5 6

1 11303 9436 9026 8660 8431

2 2608 2846 3152 3438 3695

3 1719 932 106'2 1208 1319

4 881 817 861 893 946

5 918 826 816 845 890

6 1036 859 844 807 845

Table 11: Work required for convergence -- Transonic flow with shock -- Local time-stepping
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Grid

Levels

Number of Stages

2 3 4 5 6

1 6130 5200 5107 -- 4584

2 1589 1608 -- -- --

3 916 863 987 850 851

4 639 536 526 587 645

5 374 365 390 332 380

6 627 429 464 482 579

Table 12: Work required for convergence -- Transonic flow with shock -- Characteristic

time-stepping. Dashes denote cases that did not converge to 10 -l°.

Convergence History

Channel Flow

,o.:° ,\-\
- 8.0 _

-12.0 , , , •o. _o. 5_. do.
Flux Calculation on Fine Grid

lOOO.

Figure 13: Comparison of local and characteristic time-stepping -- Transonic flow with shock

-- Two stages, five grid levels
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Flux Calculation on Fine Grid
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.... 4 Stages

-.. 5 Stages
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Figure 14: Convergence with different numbers of stages -- Transonic flow with shock --

Characteristic time-stepping, five grid levels
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Figure 15: Convergence with different numbers of grid levels -- Transonic flow with shock

-- Characteristic time-stepping, two stages
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Figure 16: Convergence with different base grids -- Transonic flow without shock m Local

time-stepping, best results per base grid
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Figure 17: Convergence with different base grids m Transonic flow without shock -- Char-

acteristic time-stepping, best results per base grid
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Figure 18: Convergence with different base grids -- Transonic flow with shock -- Local
time-stepping, best results per base grid
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Figure 19: Convergence with different base grids -- Transonic flow with shock -- Charac-

teristic time-stepping, best results per base grid
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6 Application to Multi-Dimensional Equations

A successful extension of the scalar, one-dimensional analysis to the Euler equations in more

than one space-dimension stands or falls with the availability of a robust wave-decomposition

model. Work on such decompositions is in progress, but has not yet led to reliable schemes.

The basis for one possible preconditioning follows.

The two-dimensional Euler equations can be written as

0u ( 0u ( ou
= -A z - B U)- y = Res(U) . (44)

There is no obvious way to precondition the residual with a local matrix, as the matrices

A(U) and B(U) do not have the same eigenvectors, and therefore can not be diagonalized

simultaneously. This means Equation 44 can not be written as a system of coupled scalar

convection equations. An understanding of the waves that locally pass through the grid can

be obtained by assuming some a priori knowledge about the types of waves present, and

then fitting this model to the local data [9, 10]. The wave model adopted here is based on

the Euler equations written in a coordinate system aligned with the local streamline:

OU OU OU

Ot - -A, (U) _ - A. (U) _ = Res (U). (45)

The four-component residual vector and, in addition, the two components of the cell-averaged

pressure gradient, are then used to obtain the amplitudes of six local waves: two acoustic

waves, a shear wave and an entropy wave, all moving along the streamline, and two acoustic

waves moving normal to the streamline. Mathematically this means that the residual is
rewritten as

Res (U)= RAa, (46)

where a is the vector of wave strengths, A is a 6 × 6 diagonal matrix carrying the wave

speeds in its main diagonal, and R is a 4 × 6 matrix built from four eigenvectors of A, and

two of A,. The preconditioned equation may now formally be written as

0U

0-7 = Rp(A)A-' LRes(U) (47)

= M Res(U). (48)

The 6 x 4 matrix L is a generalized inverse of R and therefore not uniquely defined. Research

is presently focusing on finding an inverse, using physical or mathematical arguments, that

makes the preconditioning by M truly effective.

It should be noted that, even if a suitable preconditioning matrix M is developed, the

optimally-smoothing schemes are "tuned" to filter waves travelling in the propagation di-

rection (c_,%) of the problem being solved. For optimal performance in two dimensions,

something must be done about high-frequency waves normal to this direction. For a convec-

tion problem defined by
a 0

% 0"_ + cY-h"- ' (49)uy
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Grid

Levels

Stages

2 6

1 8821 7404

2 2455 3145

3 2458 1758

4 2380 1684

Table 13: Work required for convergence -- Two-dimensional case -- Local time-stepping

a derivative in the direction normal to the propagation direction is given by

0 0

- (50)

and a positive-definite operator which acts in this normal direction is given by

2 02u 02u c2 02u (51)
%'_y 2c_% oxOy + -_'_x 2 •

Unfortunately, adding this term would reduce any scheme to first order. Methods of adding

this term in a non-linear manner are being studied, to give optimal damping Without reducing

the order of the solution in the steady state.

Since the work on the preconditioning matrix and the cross-diffusion terms mentioned

above is still in progress, the two-dimensional Euler equation results presented here are for

local time-stepping with no cross-diffusion. The test case was a NACA 0012 airfoil at zero

incidence in a Moo = 1.2 frcestream. This case has a bow shock and a fishtail shock. First-

order upwind-differencing was used. Table 13 summarizes the number of finest-grid residual

calculations necessary for convergence (to 10 -l°) on a 64 × 32 grid. In the six-stage, four

grid-level scheme, three iterations on the finest grid followed by one on each of the coarser

grids were used; for all other schemes, one iteration on each grid was used. Despite the use of

local time-stepping as a substitute for characteristic time-stepping, the multi-stage schemes

combined well with the multigrid acceleration.

7 Conclusions and Future Research Directions

In these notes, a method has been developed for designing optimally smoothing multi-stage

time-marching schemes, given any spatial-differencing operator. Such schemes are particu-

larly useful in conjunction with multi-grid acceleration. The advantage of using these opti-

mally smoothing schemes has been demonstrated by comparison with Runge-Kutta schemes

in solving a nonlinear scalar equation. The analysis has been extended to the Euler equations
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in one space-dimensionby useof characteristic time-stepping. Convergencerates indepen-
dent of the numberof cellsin the finest grid havebeenachievedwith theseoptimal schemes,
for transonic flow with and without a shock. Besidescharacteristic time-stepping, local
time-stepping has beentested with theseschemes.While the analysis is only truly appli-
cablewith characteristic time-stepping,good convergencehasstill beenobtained with local
time-stepping. The extensionto two-dimensionalflows is hamperedby the lack of a robust
two-dimensionalwavemodel that may serveasthe basisof characteristic time-stepping,and
by the lack of a method to damp high-frequencywavesnormal to the direction of propaga-
tion. Future researchmust concentrateon thesetwo issues.Only with thesetechniquesmay
full advantagebe taken of the optimally smoothing multi-stage schemes.
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